# Far-Infrared Spectra of Lanthanide Complexes with 8-Hydroxyquinoline

# Piotr M. Drożdżewski\* and Krystyna Kopacz

Institute of Inorganic Chemistry and Metallurgy of Rare Elements, Technical University of Wrocław, PL-50 370 Wrocław, Poland

**Summary.** Vibrational spectra of lanthanide oxines have been measured in the far-infrared region. In addition, the similar yttrium complex was investigated for further experimental evidence for the proposed band assignments. The most important metal-oxygen and metal-nitrogen bond vibrations have been attributed to absorptions between  $390-350 \text{ cm}^{-1}$  and  $210-170 \text{ cm}^{-1}$ , respectively.

Keywords. Lanthanide oxines; FIR; Metal-ligand vibrations.

#### Ferne IR-Spektren von Lanthanidenkomplexen mit 8-Hydroxychinolin

**Zusammenfassung.** Es wurden die Vibrationsspektren von Lanthanid-Oxinen im fernen IR-Bereich gemessen. Zusätzlich wurde der analoge Yttrium-Komplex untersucht, um die Bandenzuordnungen experimentell zu stützen. Die wichtigsten Metall-Sauerstoff- und Metall-Stickstoff-Bindungsschwingungen wurden den Absorptionen zwischen 390–350 cm<sup>-1</sup> und 210–170 cm<sup>-1</sup> zugeordnet.

# Introduction

The metal chelating ability of 8-hydroxyquinoline (HQ) is still attracting much attention in vibrational spectroscopy. Among many transition metals which form oxine complexes, those of the f-electrons have also been investigated by IR spectroscopy [1]. However, these studies were limited to the middle IR region where the ligand vibrations are generally observed. In order to collect data about the positions of the metal-ligand vibrations, the far-IR region has to be examined. Such work seems to be important especially in the case of lanthanide complexes for which there are less data in the literature compared to the d-electron metals.

In the present paper, the lanthanide-oxines were examined by means of far-IR spectroscopy with the purpose of experimental determination of absorptions generated by the coordination sphere vibrations.

## Experimental

Commercial 8-hydroxyquinoline was purified by twofold recrystallization from ethanol. Lanthanide oxides were dissolved in a small amount of nitric acid and evaporated to dryness to remove the excess of HNO<sub>3</sub>. The precipitated salt was dissolved in water and used for complex syntheses according to the method presented by Charles et al. [2]. The middle-IR spectra has been measured to prove the

proper complex formation. An additional yttrium-oxine complex was obtained as described by Cardwell et al. [3]. Routine IR spectra were recorded on a Specord 75 IR spectrophotometer. The KBr pellet or hexachlorobutadiene suspension techniques were applied for sample preparations. Far-IR absorptions were measured on a Perkin-Elmer 180 spectrophotometer using Nujol mulls between polyethylene plates.

## **Results and Discussion**

In the low IR wavenumbers region several differences are observed between the spectra of 8-hydroxyquinoline and its lanthanide complexes  $(LnQ_3)$ . Fig. 1 demonstrates these changes for free ligand absorptions and for the typical complex spectrum – a praseodymium one. After coordination of metal ion new bands appear at 379 and 361 cm<sup>-1</sup> in the IR spectrum of the complex. A second important change is observed in the region between 250 and  $150 \text{ cm}^{-1}$ . The ligand spectrum exhibits there only one intense band at  $196 \text{ cm}^{-1}$  whereas the very broad and also intense absorption with its maximum at about  $205 \text{ cm}^{-1}$  and a shoulder at  $180 \text{ cm}^{-1}$  appears for the complex. These bands may be considered as resulting from metalligand vibrations. Aly et al. [1] have assigned the lanthanide-oxygen stretching vibrations to the bands around 490 cm<sup>-1</sup>. Other authors [4, 5] have attributed the same band to the ligand vibrations in which the  $\delta$  (C–O) deformation mode was a significant participation. This band has also been found to be sensitive to a HQ - DQ substitution [4] which confirms its  $\delta$  (C–O) origin and explains the small shift (from 493 to  $485 \text{ cm}^{-1}$ ) after metal-oxygen bond formation.

As it has been stated before, the v(Ln-O) stretching vibrations may absorb at about  $370 \text{ cm}^{-1}$ . It is a rule that IR bands sensitive to metal motion in the complex molecule exhibit a regular shift toward higher wavenumbers with an increase of the atomic number of the lanthanide. Similar examination of main bands in the far-IR region are presented in Fig. 2 for  $LnQ_3$  complexes. The strongest and most linear dependence of band wavenumbers against lanthanide ionic radii



Fig. 1. Comparison of far-infrared spectra of 8-hydroxyquinoline (broken line) and its praseodymium complex (solid line)



Fig. 2. Plot of far-infrared band positions against lanthanide ionic radii



Fig. 3. Spectra of praseodymium (solid line) and yttrium (broken line) complexes with 8-hydroxyquinoline

is seen for previously mentioned bands around 370 and below  $200 \text{ cm}^{-1}$ . This result confirms that the bands at 379 and  $361 \text{ cm}^{-1}$  are due to the lanthanide-oxygen stretching vibrations. The same graph suggests that the metal-nitrogen vibrations can be attributed to the absorptions near  $200 \text{ cm}^{-1}$ .

Similar wavenumbers of bands generated by lanthanide-aromatic-nitrogen vibrations have been found for phenanthroline [6, 7] and dipyridil [8, 9] complexes. Since the last assignment is not quite clear because of the ligand vibration absorbing in the same region, an additional experiment had been carried out. For some of the d-electron metals the metal isotope technique is very useful for far-IR band

| Metal<br>La | Band positions and assignments                |             |         |        |        |      |         |     |
|-------------|-----------------------------------------------|-------------|---------|--------|--------|------|---------|-----|
|             | $\frac{\text{Lig} + \delta_{\text{CO}}}{483}$ | Lig.<br>438 | v(Me-O) |        | Lig.   | Lig. | v(Me-N) |     |
|             |                                               |             | 372     | 353    |        | 295  | 206     | 172 |
| Pr          | 485                                           | 433         | 378     | 360    | 307 sh | 294  | 205     | 177 |
| Nd          | 485                                           | 435         | 379     | 362    | _      | 293  | 206     | 181 |
| Sm          | 486                                           | 435         | 385 sh  | 370    | 307    | 295  | 206     |     |
| Eu          | 487                                           | 435         | 374     | 356 sh | 308 sh | 295  | 207     |     |
| Gd          | 489                                           | 429         | 380     | 363    | _      | 267  | 203     | ~-  |
| Tb          | 488                                           | 432         | 379     | 362    | 308 sh | 296  | 207     |     |
| Dy          | 489                                           | 433         | 381     | 363    | 309 sh | 298  | 208     |     |
| Но          | 489                                           | 435         | 383     | 365    | 309 sh | 298  | 209     |     |
| Er          | 490                                           | 435         | 385     | 367 sh | 310 sh | 298  | 209     |     |
| Tm          | 490                                           | 434         | 389     | 370 sh | 310    | _    | 218 sh  | 208 |
| Yb          | 490                                           | 435         | 390     | 372    | 315 sh | 308  | 218 sh  | 209 |
| Lu          | 491                                           | 436         | 392     | 374    | -      | 308  | -       | 210 |
| Y           | 490                                           | 435         | 384     | 367    |        | 300  | 243     |     |

**Table 1.** Far-infrared band positions (cm<sup>-1</sup>) of lanthanide and yttrium complexes with 8-hydroxyquinoline (sh = shoulder)

assignments. In the case of lanthanides, the mass effect is very small, even smaller than the one caused by the metal-ligand bond strength. Looking for a relatively bigger mass change the yttrium complex was compared with the lanthanide ones. Yttrium and lanthanides show a similarity in chemical behaviour but differ much in their masses. Thus the "isotope-like" effect may be observed as presented in Fig. 3. Bands already assigned to the v(Ln-O) and v(Ln-N) vibrations show the largest shift toward higher wavenumbers upon praseodymium-yttrium substitution. The remaining bands at about 430 and  $300 \text{ cm}^{-1}$  show smaller shift and can be assigned to the ligand vibrations. The wavenumbers of all far IR bands and their assignments are summarized in Table 1.

#### References

- [1] Aly H. F., Abdel Kerim F. M., Kandil A. T. (1971) J. Inorg. Nucl. Chem. 33: 4340
- [2] Charles R. G., Freiser H., Friedel R., Hilliard L. G., Johnston W. D. (1965) Spectrochim. Acta 8: 1
- [3] Cardwell T. J., Magee R. J. (1968) Anal. Chim. Acta 43: 321
- [4] Tackett I. E., Sawer D. F. (1964) Inorg. Chem. 3: 692
- [5] Ohkaku N., Nakamoto K. (1971) Inorg. Chem. 19: 798
- [6] Hart F. A., Laming F. P. (1965) J. Inorg. Nucl. Chem. 27: 1605
- [7] Hart F. A., Laming F. P. (1964) J. Inorg. Nucl. Chem. 26: 579
- [8] Hart F. A., Laming F. P. (1965) J. Inorg. Nucl. Chem. 27: 1825
- [9] Sinha P. S. (1964) Spectrochim. Acta 20: 879

Received January 11, 1988. Accepted February 29, 1988